Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosci Rep ; 38(4)2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-30068697

RESUMO

The incidence of global head and neck cancer has increased markedly in the last 10 years, and its prognosis is poor, which seriously endangers people's life and health. At present, there are few studies on its pathogenesis. Golgi integral membrane protein 4 (GOLIM4) is a major member of the Golgi apparatus transporter complex, and its role in tumor is unclear. The present study found that GOLIM4 was the key target protein downstream of stromal interaction molecule 1 (STIM1), which can inhibit the proliferation of head and neck cancer cells FaDu (human pharyngeal squamous carcinoma cell) and Tca-8113 (human tongue squamous carcinoma cell) with knockdown of GOLIM4 by lentivirus. And the decreased expression of GOLIM4 induced cellular apoptosis. Further experiments revealed that FaDu cell cycle progression was changed after GOLIM4 silence, G1 phase arrest and the number of G2/M cells decreased significantly. It was also found that the cells in S-phase decreased markedly after GOLIM4 was knocked down compared with the control group by 5-bromo-2'-deoxyuridine (BrdU) incorporation experiment. In conclusion, we found that GOLIM4, as the target gene downstream of STIM1, inhibited the proliferation of head and neck cancer, promoted apoptosis, and regulated cell cycle progression, and GOLIM4 is a novel oncogene in head and neck cancer and might help in developing promising targetted therapies for head and neck cancer patients.


Assuntos
Apoptose , Ciclo Celular , Proliferação de Células , Neoplasias de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Proteínas de Transporte Vesicular/análise , Proteínas de Transporte Vesicular/genética
2.
Pharmazie ; 73(7): 408-412, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30001776

RESUMO

This present investigation examined the mitigating impact of Ginkgolic acid in the organization on oxidized low-density lipoproteinox-LDL (ox- LDL) animated in HUVECs, and to clear up its fundamental molecular components. The levels of nitric oxide (NO), prostaglandin E2 (PGE2), and pro-inflammatory cytokines were measured by Griess examine and catalyst connected immunosorbent test. The declarations of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), mitogen-initiated protein kinases (MAPKs), and Akt were measured utilizing Western smearing. ox-LDL-instigated was utilized as the HUVECs cell model of inflammation. Ginkgolic acid significantly inhibited the production of NO, PGE2, and pro-inflammatory cytokines in a dose-dependent manner and suppressed the expression of iNOS and COX-2 in ox-LDL-stimulated HUVECs cells. Ginkgolic acid strongly suppressed NF-κB by preventing degradation of inhibitor of κB-α as well as by inhibiting phosphorylation of Akt and MAPKs. Ginkgolic acid reduced LDL-stimulated inflammation in endothelial cells. These outcomes suggest that the anti-inflammatory properties of Ginkgolic acid are related to a down-control of iNOS, COX-2, and master provocative cytokines through the restraint of NF-κB pathway in ox- LDL-animated endothelial cells.


Assuntos
Anti-Inflamatórios/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Inflamação/tratamento farmacológico , Salicilatos/farmacologia , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Dinoprostona/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Inflamação/patologia , Lipoproteínas LDL/administração & dosagem , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo
3.
Talanta ; 146: 603-8, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26695309

RESUMO

Acetone is a predominant volatile organic compound (VOC) in the exhaled breath and a promising biomarker for diabetes and ketoacidosis. A non-thermal micro-plasma generated in a planar dielectric barrier discharge (DBD) is used as a radiation source for the excitation of gaseous acetone followed by its quantification with optical emission spectrometry (OES). Gaseous acetone can be directly sampled, while liquid acetone is evaporated by heated tungsten coil and then introduced into the DBD micro-plasma by a helium carrier flow for performing optical emission and detection at a 519 nm emission line. In the present study, the exhaled breath is collected and transferred into aqueous medium for sampling. With a sampling volume of 7 µL in a micro-drop, a linear range of 40-1600 mg L(-1) is obtained along with a detection limit of 44 ng and a precision of 5.7% RSD. The present system is successfully applied to the determination of breath acetone for both diabetic patients and healthy volunteers.


Assuntos
Acetona/análise , Testes Respiratórios/métodos , Expiração , Gases em Plasma/química , Testes Respiratórios/instrumentação , Impedância Elétrica , Humanos , Fibras Ópticas , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...